$H_2O(l) \rightarrow H^+(aq) + OH^-(aq)\,;\,\,\Delta H = 57.32\,kJ$
$H_2(g)+ \frac{1}{2} O_2(g) \rightarrow H_2O(l)\,;\,\, \Delta H=-286.20\,kJ$
$(i)$ $\quad H_{2} O(\ell) \rightarrow H^{+}(a q .)+O H^{-}(a q .)$
$\Delta H_{r}=57.32 \,k J$
$(ii)$ $\quad H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(\ell)$
$\Delta H_{r}=-286.20 \,k J$
For reaction $(i)$
$\Delta {H_r} = \Delta H_f^o\left( {{H^ + },aq} \right) + \Delta H{\mkern 1mu} _f^o\left( {O{H^ - }.aq} \right) - \Delta H{\mkern 1mu} _f^o\left( {{H_2}O,\ell } \right)$
$57.32 - 0 + \Delta H{\mkern 1mu} _f^o\,\left( {O{H^{ - 1}},aq} \right) - \quad \Delta H_f^o\left( {{H_2}O,\ell } \right)\quad \ldots (iii)$
For reaction $(ii)$
$\Delta {H_r} = \Delta H_f^o\left( {{H_2}O,l} \right) + \Delta H_f^o\left( {{H_2}O,\,l} \right) - \Delta H_f^o\left( {{H_2},g} \right) - \frac{1}{2}\Delta H_f^o({O_2},g)$
$ - 286.20 = \Delta H_f^o\,({H_2}O,l)$
On replacing this value in equ. $(iii)$ we have
$57.32 = \Delta H_f^o\left( {O{H^ - },aq} \right) - ( - 286.20)$
$\Delta H_f^o = - 286.20 + 57.32$
$=-228.88 \,k J$
$(A)$ $\Delta U = q + p \Delta V$
$(B)$ $\Delta G =\Delta H - T \Delta S$
$(C)$ $\Delta S =\frac{ q _{ rev }}{ T }$
$(D)$ $\Delta H =\Delta U -\Delta nRT$
નીચે આપેલા વિકલ્પોમાંથી યોગ્ય ઉત્તર પસંદ કરો.
$A$. પ્રવાહીનું બાષ્પમાં બાષ્પીભવન થાય છે.
$B$. સ્ફટિકમય ધનનું તાપમાન $130 \mathrm{~K}$ માંથી $0 \mathrm{~K}$ નીચું (ધટાડવામાં આવે છે) લઈ જવામાં આવે છે.
$C$. $2 \mathrm{NaHCO}_{3(\mathrm{~s})} \rightarrow \mathrm{Na}_2 \mathrm{CO}_{3(\mathrm{~s})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_2 \mathrm{O}_{(\mathrm{g})}$
$D$. $\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Cl}_{(\mathrm{g})}$
નીચે આપેલા વિકલ્પોમાંથી સાચો જવાબ શોધો.
$A.$ $I _2( g ) \rightarrow 2 I ( g )$
$B.$ $HCl ( g ) \rightarrow H ( g )+ Cl ( g )$
$C.$ $H _2 O ( l ) \rightarrow H _2 O ( g )$
$D.$ $C ( s )+ O _2( g ) \rightarrow CO _2( g )$
$E.$ પાણીમાં એમોનિયમ કલોરાઈડનું વિલયન (ઓગળવું)