\( \mu_e = 2.3 m^2 /VS, \mu h = 0.01 m^2/V_S\)
અહીં, \(n_e > n_h\) હોવાથી અર્ધવાહક \(N\) પ્રકારનો હશે.
વાહકતા \(\sigma = \frac{1}{\rho } = e ({n_e}{\mu _e} + {n_h}{\mu _h}) \)
\(\therefore \rho = \frac{1}{{e ({n_e}{\mu _e} + {n_h}{\mu _h})}} = \frac{1}{{1.6 \times {{10}^{ - 19}}((8 \times {{10}^{18}} \times 2.3) + (5 \times {{10}^{18}} \times 0.01))}}\)
\( = 0.34\; \Omega m\)
$\left[ h =6.63 \times 10^{-34} \;Js \right.$ and $\left. c =3 \times 10^{8} \;ms ^{-1}\right]$
$(A)\quad\quad\quad\quad(B)$