\(\therefore \,\,Radius,\,r = \frac{1}{{\sqrt \pi }} \times {10^{ - 2}}\,m\)
\(\frac{{dm}}{{dt}} = \rho AV\)
\(\frac{{15}}{{5 \times 60}} = {10^3} \times \pi {\left( {\frac{1}{{\sqrt \pi }}} \right)^2} \times {10^{ - 4}}V\)
\( \Rightarrow V = 0.05\,m/s\)
Reynold's number, \({R_e} = \frac{{\rho Vr}}{n}\)
\( = \frac{{{{10}^3} \times 0.5 \times \frac{2}{{\sqrt \pi }}{{10}^{ - 2}}}}{{{{10}^{ - 3}}}} \cong 5500\)
(પ્રવાહી એકબીજામાં મિશ્ર થતાં નથી)