\(\frac{{{K_A}}}{{{K_B}}}\,\, = \,\,\frac{{\theta - {\theta _2}}}{{{\theta _1} - \theta }}\,\, = \,\,3\,\,\,\, \Rightarrow \,\,3\,{\theta _1} + {\theta _2} = \,\,4\,\theta \)
\(\because \,\,\,{\theta _1} - {\theta _2} = \,\,{20^ \circ }C\,\,\,\,\,\,\)
\(\therefore \,\,\,{\theta _2} = {\theta _1} - {20^ \circ }C\,\,\,\,\)
\( \Rightarrow \,\,3\,{\theta _1} + {\theta _1} - {20^ \circ }C\,\, = \,\,4\,\theta \,\,\,\,\,\,\, \)
\(\Rightarrow \,\,4\,\,({\theta _1} - \theta )\,\, = \,\,{20^ \circ }C\,\,\,\)
\(\Rightarrow \,\,{\theta _1} - \theta \,\, = \,\,{5^ \circ }C\)