$ \Rightarrow \,\,\,\left( {440 \times \frac{1}{5}} \right) + \left( {120 \times \frac{4}{5}} \right)$
$\therefore \,\,\,\,{\text{P}}$ કુલ ${\text{ = 184}}$
હવે, ${\text{P}}$ કુલ $ \times {{\text{Y}}_{\text{A}}}{\text{ = }}{{\text{P}}_{\text{A}}}$
$\therefore \,\,\,{\text{ }}{{\text{p}}_{\text{A}}}{\text{ = }}{{\text{p}}_{\text{A}}}^{\text{0}}{{\text{X}}_{\text{A}}}{\text{ = }}{{\text{Y}}_{\text{A}}}{\text{ }} \times {\text{ P}}$ કુલ
$\,\therefore \,\,{Y_A} = \frac{{{p_A}^0{X_A}}}{P}\,\,\, = \,\,\,\frac{{440 \times \frac{1}{5}}}{{184}} = \frac{{88}}{{184}} = 0.478$
($H _{2} CO _{3}$ નો પ્રથમ વિયોજન અચળાંક =$4.0 \times 10^{-7}$$\log 2=0.3 ;$ હળવા પીણાં ની ઘનતા $=1\, g\, mL ^{-1})$