[આપેલ: $\ln 10=2.3$$R =8.3\, J \, K ^{-1}\, mol ^{-1}$]
$\operatorname{\ell n}\left(\frac{ K _{2}}{ K _{1}}\right)=\frac{532611}{8.3}\times\left(\frac{10}{310 \times 300}\right)$
where $K _{2}$ is at $310 \,K$ and $K _{1}$ is at $300 \,K$ $\ln \left(\frac{ K _{2}}{ K _{1}}\right)=6.9$
$=3 \times \ell n 10$
$\ell n \frac{ K _{2}}{ K _{1}}=\ell n 10^{3}$
$K _{2}= K _{1} \times 10^{3}$
$K _{1}= K _{2} \times 10^{3}$
So $K=1$
${A}+{B} \rightarrow {M}+{N}$ $......$ ${kJ} {mol}^{-1}$ બરાબર છે. (નજીકના પૂર્ણાંકમાં)
$A\,\xrightarrow{{{K_1}}}\,B,$ સક્રિયકરણ ઊર્જા ; $Ea_1$
$A\,\xrightarrow{{{K_2}}}\,C,$ સક્રિયકરણ ઊર્જા $Ea_2$