$\frac{1}{4}R = k{[2B]^n}$;
$4 = {\left( {\frac{1}{2}} \right)^n}$;
$4 = {2^{ - n}}$;
$n = - 2$.
ખોટું વિધાન ઓળખો.
(આપેલ : $\log 2=0.30, \log 3=0.48$ )
$C{l_{2(aq)}} + {H_2}{S_{(aq)}} \to {S_{(S)}} + 2H_{(aq)}^ + + 2Cl_{(aq)}^ - $ માટે વેગ $= K[Cl_2][H_2S]$ છે તો કયો તબક્કો વેગ સમીકરણ સાથે સુસંગત છે ?
$(A)$ $Cl_2 + H_2S \rightarrow H^++ Cl^- + Cl^+ + HS^-$ (ધીમો); $ Cl^+ + HS^- \rightarrow H^++ Cl^- + S$ (ઝડપી)
$ (B)$ $H_2S $ $\rightleftharpoons$ $ H^+ + HS^-$ (ઝડપી સંતુલન) ; $Cl_2 + HS^- \rightarrow 2Cl^- + H^+ + S $ (ધીમો)

$CH_3COCH_{3(aq)} + Br_{2(aq)} \rightarrow $$CH_3COCH_2Br_{(aq)} + H^+_{(aq)}+ Br^-_{(aq)}$
નીચેની પ્રક્રિયા સાંદ્રતા પરથી આ ગતિકીય માહિતી મળે છે.
શરૂઆતની સાંદ્રતા, $M$
| $[CH_3COCH_3]$ | $[Br_2]$ | $[H^+]$ |
| $0.30$ | $0.05$ | $0.05$ |
| $0.30$ | $0.10$ | $0.05$ |
| $0.30$ | $0.10$ | $0.10$ |
| $0.40$ | $0.05$ | $0.20$ |
$Br_2$ ના દૂર થવાનો શરૂઆતનો દર $Ms^{-1}$ માં નીચે મુજબ છે.
$5.7 \times 10^{-5} ,$ $5.7 \times 10^{-5} ,$ $1.2 \times 10^{-5} ,$ $3.1 \times 10^{-5}$
આ માહિતીને આધારે વેગ સમીકરણ ...... થશે.