એક પદાર્થ ઉદગમથી શરૂ કરી $2\;s$ નાં આવર્તકાળથી સરળ આવર્ત દોલનો કરે છે. કેટલા સમય પછી તેની ગતિઊર્જા એ કુલ ઊર્જાના $75 \%$ જેટલી થશે ?
AIEEE 2006, Diffcult
Download our app for free and get started
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
એક કણ $4 \mathrm{~cm}$ ના કંપવિસ્તારથી સરળ આવર્ત ગતિ કરે છે. મધ્યમાન સ્થાને કણનો વેગ $10 \mathrm{~cm} / \mathrm{s}$ છે. જ્યારે કણની ઝડ૫ $5\ \mathrm{cm} / \mathrm{s}$ થાય ત્યારે મધ્યમાન સ્થાન થી તેનું અંતર $\sqrt{\alpha}\ \mathrm{cm}$ છે,જ્યા $\alpha=$_______.
$2.0$ સે આવર્તકાળ ધરાવતી સરળ આવર્તગતિ કરતાં પિસ્ટન પર એક બ્લોક રાખેલ છે. આ બ્લોકને પિસ્ટનથી જુદો કરી શકાય તેવો પીસ્ટનનો વેગ ........... $ms ^{-1}$ હશે ?
એક લોલકના ગોળાનું દળ $50 gm $ છે. આ ગોળાને આકૃતિમાં દર્શાવ્યાં પ્રમાણે સમક્ષિતિજ સપાટી $A$ પરથી મુક્ત કરવામાં આવે છે. જો આ લોલકની લંબાઈ $1.5 m$ હોય, તો તે જયારે ગતિપથના સૌથી નીચેના બિંદુ $B $ પાસે પહોંચે ત્યારે તેની ગતિ-ઊર્જા કેટલી હશે ? ($g = 10 m/s^2$ લો.)
જ્યારે એક $m$ દળના કણને $k$ સ્પ્રિંગ અચળાંક ધરાવતી શિરોલંબ સ્પ્રિંગ સાથે જોડીને મુક્ત કરતાં તે $y ( t )= y _{0} \sin ^{2} \omega t $ મુજબ ગતિ કરે છે, જ્યાં $'y'$ એ ખેંચાયા વગરની સ્પ્રિંગની નીચેના ભાગેથી માપવામાં આવે છે. તો તેના માટે $\omega$ કેટલો હશે?
પદાર્થ સરળ આવર્ત ગતિ કરે છે. સ્થિતિઉર્જા $(P.E.)$, ગતિઉર્જા $(K.E.)$ અને કુલઉર્જા $(T.E.)$ સ્થાનતર $x$ ના વિધેય સ્વરૂપે માપવામાં આવે છે. નીચેનામાંથી કયું વિધાન સાચું છે?
$M$ દળ અને $R$ જેટલી ત્રિજ્યા ધરાવતી તક્તી તેના પરિઘ પરના કોઈ બિંદુ બાંધીને લટકાવેલ છે. જે ઊર્ધ્વ દિશામાં લટકાવેલ છે. તેના દોલનોનો આવર્તકાળ કેટલો થશે ?
આપેલ આકૃતિમાં, એક $M$ દળ જેનો એક છેડો દઢ આધાર સાથે જડિત કરેલ છે તેવી સમક્ષિતિજ સ્પ્રિંગ સાથે જોડેલ છે. સ્વિંગનો સ્પ્રિંગ અચળાંક $k$ છે. ઘર્ષણરહિત સપાટી પર દળ $T$ જેટલા આવર્તકાળ અને $A$ જેટલા કંપવિસ્તાર સાથે દોલન કરે છે. આકૃતિમાં દર્શાવ્યા અનુસાર, દળ જ્યારે સંતુલન સ્થિતિમાં હોય છે ત્યારે બીજા $m$ દળને ધીરેથી (સાવચેતીથી) તેના પર જોડવામાં આવે છે. દોલનનો નવો કંપવિસ્તાર ............ થશે.