At point B
\(\frac{4}{3} \times \sin \theta^{\prime \prime}=1 \times \sin 90^{\circ}\)
\(\theta^{\prime \prime}=\sin ^{-1}\left(\frac{3}{4}\right)\)
\(\theta^{\prime}=\left(\frac{\pi}{2}-\theta^{\prime \prime}\right)\)
At point \(A\)
\(1 \times \sin \theta=\frac{4}{3} \times \sin \theta^{\prime}\)
\(\sin \theta=\frac{4}{3} \times \sin \left(\frac{\pi}{2}-\theta^{\prime \prime}\right)\)
\(\sin \theta=\frac{4}{3} \cos \left[\cos ^{-1} \frac{\sqrt{7}}{4}\right]\)
\(\sin \theta=\frac{4}{3} \times \frac{\sqrt{7}}{4}\)
\(\theta=\sin ^{-1}\left(\frac{\sqrt{7}}{3}\right)\)