\({P_0}V = NRT\)
\({T_f} = 2{T_0}\)
\(W = \int {PdV} \)
\( = \int {\left( {\frac{{nRT}}{V} + \alpha } \right)dV} \)
\(PV = nRT + \alpha V\)
\(\int {PdV = \int\limits_{{T_0}}^{2{T_0}} {nRdT + \int\limits_{{V_1}}^{{V_1}} {\alpha dV} } } \)
\( = nR{T_0} + \alpha \,{V_i}\)
\( = nR{T_0} + \alpha \left( {\frac{{nR{T_0}}}{{{P_0}}}} \right)\)
\( = nR{T_0} \left( {1 + \frac{\alpha }{{{P_0}}}} \right)\)
\(PV = nRT + \alpha V\)
\(\int {PdV = \int {nRdT + \int {\alpha dV} } } \)
\(W = nR{T_0} + \alpha \left[ {\frac{{nR{T_0}}}{{{P_0} - \alpha }}} \right]\)
\(W = nR{T_0}\left[ {1 + \frac{\alpha }{{{P_0} - \alpha }}} \right]\)
\( = n{R_0}{T_0}\left[ {\frac{{{P_0}}}{{{P_0} - \alpha }}} \right]\)
\( = \frac{{nR{T_0}{P_0}}}{{{P_0} - \alpha }}\)
કારણ : સમતાપી પ્રક્રિયા ધીમી હોવાથી તેનો ઢાળ નાનો હોય