where \(I =\frac{ MR ^{2}}{2}\) about \(COM\) and \(w =\frac{ V }{ R }\)
\(\Rightarrow K _{1}=\frac{1}{2}\left(\frac{ M R ^{2}}{2}\right)\left(\frac{ V }{ R }\right)^{2}=\frac{1}{4} MV ^{2}\)
If it has a velocity of \(COM\), then translatory \(KE\) is \(K _{2}=\frac{1}{2} MV ^{2}\)
\(\therefore\) Total \(KE = K = K _{1}+ K _{2}=\frac{3}{4} MV ^{2}\)
Required ratio \(\frac{ K _{1}}{ K }=\frac{1 / 4 MV ^{2}}{3 / 4 MV ^{2}}=\frac{1}{3}\)