${H_{2\left( g \right)}} + 1/2{O_{2\left( g \right)}} \to {H_2}{O_{\left( l \right)}};\Delta {H_2}$ હોય, તો
\(ii)\) \(H _2+\frac{1}{2} O _2 \longrightarrow H _2 O _{( e )} \Delta H _{ ii }\)
\((i) - (ii):\) \(H _2 O _{( I )} \rightarrow H _2 O _{\text {(q) }} \Delta H\)
અહી \(\Delta H=\Delta H_1-\Delta H_{1 i} > 0 \quad \therefore \Delta H _i > \Delta H_ii\)
${N_2} + 3{H_2} \to 2N{H_3}$
જો $\Delta H$ અને $\Delta U$ અનુક્રમે પ્રક્રિયા માટેના એન્થાલ્પી ફેરફાર અને આંતરિક ઊર્જા ફેરફાર હોય, તો નીચેનામાંથી કઇ રજૂઆત સાચી છે ?
${H_2}C = C{H_2}(g) + {H_2}(g) \to {H_3}C - C{H_3}(g)$
(આપેલ : $R =8.3\, J \,K ^{-1} \,\,mol ^{-1}$ )