$\overrightarrow{\mathrm{F}} =\mathrm{q}(\vec{v} \times \overrightarrow{\mathrm{B}})$
$=\mathrm{q} \vec{v} \times\left(\mathrm{B} \hat{i}+\mathrm{B} \hat{j}+\mathrm{B}_{0} \hat{k}\right)$
માં $\mathrm{q}=1,$ $\vec{v}=2 \hat{i}+4 \hat{j}+6 \hat{k}$ અને બળ $\overrightarrow{\mathrm{F}}=4 \hat{i}-20 \hat{j}+12 \hat{k}$
$\vec{B}$નું સંપૂર્ણ સમીકરણ શું હશે?
$(i)$ | $(ii)$ | $(iii)$ |
(A) $\frac{{{\mu _0}i}}{r}$ $\otimes$ | (A) $\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} - \frac{1}{{{r_2}}}} \right)$ $\otimes$ | (A) $\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} - \frac{1}{{{r_2}}}} \right)$ $\otimes$ |
(B) $\frac{{{\mu _0}i}}{{2r}}$ $\odot$ | (B) $\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} + \frac{1}{{{r_2}}}} \right)$ $\otimes$ | (B) $\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} + \frac{1}{{{r_2}}}} \right)$ $\otimes$ |
(C) $\frac{{{\mu _0}i}}{{4r}}$ $\otimes$ | (C) $\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} - \frac{1}{{{r_2}}}} \right)$ $\odot$ | (C)$\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} - \frac{1}{{{r_2}}}} \right)$ $\odot$ |
(D) $\frac{{{\mu _0}i}}{{4r}}$ $\odot$ | (D) $0$ | (D) $0$ |
$\left[{m}_{{p}}=1.67 \times 10^{-27} {kg}, {e}=1.6 \times 10^{-19} {C},\right.$ પ્રકાશની ઝડપ $\left.=3 \times 10^{8} {m} / {s}\right]$
$(i)$ $'a'$ જેટલી બાજુ ધરાવતા સમબાજુ ત્રિકોણ અને
$(ii)$ $'a'$ બાજુના ચોરસના આકારનાં પ્રવાહ ધરાવતા ગૂંચળામાં વાળવામાં આવે છે.
દરેકમાં ગૂંચળાની ચુંબકીય દ્વિ-ધુવી ચાકમાત્રા અનુક્રમે $.....$ થશે.