એટલે \( = \frac{{{P^2}}}{{2m}}\)
\( \Rightarrow \frac{{P_1^2}}{{2{m_1}}} = \frac{{P_2^2}}{{2{m_2}}} = \frac{{P_3^2}}{{2{m_3}}} = \frac{{P_4^2}}{{2{m_4}}} = K\,\,\,\,\,\,\,\lambda = \frac{h}{P}\)
\( \Rightarrow \,{\lambda _e}:{\lambda _p}:{\lambda _n}:{\lambda _\alpha }::\frac{1}{{{P_\alpha }}}:\frac{1}{{{P_P}}}:\frac{1}{{{P_n}}}:\frac{1}{{{P_\alpha }}}\)
\( \Rightarrow {\lambda _e}:{\lambda _P}:{\lambda _n}:{\lambda _\alpha }::\frac{1}{{\sqrt {{m_e}} }} > \frac{1}{{\sqrt {{m_P}} }} > \frac{1}{{\sqrt {{m_n}} }}:\frac{1}{{\sqrt {{m_\alpha }} }}\)
\({m_e} < {m_P} < {m_n} < {m_\alpha } \Rightarrow \,\frac{1}{{{m_e}}} > \frac{1}{{{m_P}}} > \frac{1}{{{m_n}}} > \frac{1}{{{m_\alpha }}}\)
\( \Rightarrow \,{\lambda _e} > {\lambda _p} > {\lambda _n} > {\lambda _\alpha }\)