जब द्रव्यमान ' $m$ ' तथा वेग ' $v$ ' से गतिमान कोई $\alpha$ कण 'Ze' आवेश के किसी भारी नाभिक पर बमबारी करता है, तो उसकी नाभिक से निकटतम उपगमन की दूरी, $m$ पर इस प्रकार निर्भर करती है :
[2016]
Download our app for free and get started
(a) निकटतम दूरी पर, कण की सम्पूर्ण गतिज ऊर्जा वैन्युतस्थैतिक स्थितिज ऊर्जा में परिवर्तित हो जाएगी।
गतिज ऊर्जा $K . E _{ s }=\frac{1}{2} mv ^2$
स्थितिज ऊर्जा P.E. $=\frac{ KQq }{ r }$
$
\frac{1}{2} mv ^2=\frac{ KQq }{ r } \Rightarrow r \propto \frac{1}{ m }
$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
हाइड्रोजन परमाणु की आद्य अवस्था में इलैक्ट्रॉन की आयनन ऊर्जा $13.6 \ eV$ होती है। $6$ तरंग दैर्ध्य की तरंगों की विकिरणों के उत्सर्जन के लिए परमाणुओं को ऊपरी ऊर्जा स्तरों तक उत्तेजित किया जाता है। उत्सर्जित विकिरण का अधिकतम तरंग दैर्ध्य इनमें से किस स्थिति परिर्वतन से सम्बन्धित होगा $:-$
किसी अचल हाइड्रोजन परमाणु का एक इलेक्ट्रॉन पाँचवें ऊर्जास्तर से न्यूनतम अवस्था स्तर को गमन करता है तो, फोटॉन उत्सर्जन के परिणामस्वरूप परमाणु द्वारा प्राप्त वेग होगा : (जहाँ $m$ इलेक्ट्रॉन का द्रव्यमान, $R$, रिडबर्ग नियतांक और $h$ प्लांक नियतांक है।)
$\frac{1}{2} m v^2$ ऊर्जा का एक अल्फा कण-नाभिक, $Z e$ आवेश के एक भारी नाभिकीय लक्ष्य पर टकराता है। अल्फा-नाभिक के लिये समीपतम पहुँचने की दूरी, निम्नांकित में किसके अनुक्रमानुपाती होगी?
हाइड्रोजन अणु का आयनीकरण विभव $13.6 eV$ है। निम्न स्तर के हाड्रोजन अणु को उत्तेजित स्तर में लाने हेतु $12.1 eV$ ऊर्जा वाला फोटॉन डालना पड़ता है। बोर सिद्धान्त के अनुसार स्पैक्ट्रम लाइनों की संख्या होगी