\(\left[ {M{L^0}{T^0}} \right] = {\left[ {ML{T^{ - 2}}} \right]^a}{\left[ {L{T^{ - 1}}} \right]^b}{\left[ T \right]^c}\)
\(\left[ {M{L^0}{T^0}} \right] = \left[ {{M^a}{L^{a + b}}{T^{ - 2ab + c}}} \right]\)
Applying the principle of homogeneity of
dimension we get
\(a=1\) ..................(\(ii\))
\(a + b = 0\) ........................(\(iii\))
\(- 2a - b + c = 0\) ....................(\(iv\))
Solving eqns.,(\(ii\)), (\(iii\)), and (\(iv\)), we get
\(a = 1,b = - 1,c = 1\)
From eqn. \((i),\,\left[ m \right] = \left[ {F{V^{ - 1}}T} \right]\)