Let \(f _1\) be apparent frequency when source is moving towards observer \(f _2\) be apparent frequency when source is moving away from observer Then change in frequency
\(\Delta f = f _1- f _2\)
\(= f \left(\frac{ v }{ v - v _{ s }}\right)- f \left(\frac{ v }{ v + v _{ s }}\right)\)
\(= f \left[\left(1-\frac{ v _{ s }}{ v }\right)^{-1}-\left(1+\frac{ v _{ s }}{ v }\right)^{-1}\right]\)
Using Binomial Theorem
\(\approx f\left[\left(1+\frac{v_s}{v}\right)-\left(1-\frac{v_s}{v}\right)\right]=\frac{2 f v_s}{v}\)
$y = {10^{ - 6}}\sin (100t + 20x + \pi /4)\;m$, જ્યાં $t$ સેકન્ડમાં છે અને $x$ મીટરમાં છે. તરંગની ઝડપ ($m/s$ માં) કેટલી થાય?