\({\log _{10}}\frac{{{K_2}}}{{{K_1}}}\,\, = \,\,\frac{{Ea}}{{R\,\, \times \,\,2.303}}\,\left[ {\frac{{{T_2}\,\, - \,{T_1}}}{{{T_1}{T_2}}}} \right]\)
આપેલ
\(\frac{{{K}_{2}}}{{{K}_{1}}}=3\),
\(R=8.314J{{K}^{-1}}mo{{l}^{-1}},\)
\({{T}_{1}}=20+273=293\,K\),
\({{T}_{2}}=50+273=323\,K\)
\({{\log }_{10}}3=\) \(\frac{Ea}{8.314\times 2.303}\left[ \frac{323-293}{323\times 293} \right]\)
\({{E}_{a}}=\) \(\frac{2.303\times 8.314\times 323\times 293\times 0.477}{30}\) \(=28811.8\,J\,mo{{l}^{-1}}\) \(=28.8118\,KJ\,mo{{l}^{-1}}\)
$1$. $[A]$ $0.012$, $[B]$ $0.0351\rightarrow $ પ્રારંભિક દર $ = 0.10$
$2$. $[A]$ $0.024$, $[B]$ $0.070\rightarrow $ પ્રારંભિક દર $= 1.6$
$3$. $[A]$ $0.024$, $[B]$ $0.035\rightarrow $ પ્રારંભિક દર $ = 0.20$
$4$. $[A]$ $0.012$ , $[B]$ $0.070\rightarrow $ પ્રારંભિક દર $ = 0.80$
(આપેલું છે: $R =2\,cal\,K ^{-1}\,mol ^{-1}$ )
$\left[\right.$ આપેલ $\left.\mathrm{R}=8.314 \,\mathrm{JK}^{-1} \,\mathrm{~mol}^{-1}\right]$