આપેલ $\left( E _{ Cu ^{2+} / Cu ^{+}}^{0}=0.16 V \right.$ $,E _{ Cu ^{+} / Cu }^{0}=0.52 V,$ $\left.\frac{ RT }{ F }=0.025\right)$
$Cu ^{+}+ e ^{-} \longrightarrow Cu ( s )$
__________________________________
$2 Cu ^{+} \longrightarrow Cu ^{2+}+ Cu$
$E_{c e l l}^{o}=E_{C u^{+} / C u}^{0}-E_{C u^{2+} / C u^{+}}^{0}$
$=0.52-0.16$
$=0.36 V$
At equilibrium $\rightarrow E _{\text {cell }}=0$
$E_{c e l l}^{o}=\frac{R T}{n F} l n K$
$\ln K =\frac{ E _{ eell }^{\circ} \times nF }{ RT }$
$\ln K =\frac{0.36 \times 1}{0.025}$
$=14.4=144 \times 10^{-1}$
$(i)$ $Zn| Zn^{2+} {(1\,M)}|| Cu^{2+}{(0.1\,M)}| Cu$
$(ii)$ $Zn| Zn^{2+} {(1\,M)}|| Cu^{2+}(1\,M) |Cu $
$(iii)$ $Zn| Zn^{2+} {(0.1\,M)}|| Cu^{2+}{(1\,M)}| Cu$
$Cu(s) + 2Ag{^+}_{(aq)} \to Cu^{+2}_{(aq)} + 2Ag(s)$
માટે સંતુલન અચળાંક $K_C = 10 \times 10^{15}$ છે, તો $298\, K$ ને $E_{cell}^o$ નું મૂલ્ય કેટલુ થશે?
[${2.303\,\frac{{RT}}{F}}$ એ $298\,K$ $=0.059\,V$]
${{\text{E}}^o }{\text{C}}{{\text{u}}^{{\text{2}} + }}{\text{/Cu = + 0}}{\text{.34 V, E}}_{{\text{F}}{{\text{e}}^{ + {\text{2}}}}/Fe}^o = \,\,{\text{ - 0}}{\text{.44 V}}$