The velocity of a particle in simple harmonic motion is given as
\(v=\omega \sqrt{A^{2}-x^{2}}\)
and magnitude of its acceleration is
\(a=\omega^{2} x\)
Given \(|v|=|a|\)
\(\therefore \omega \sqrt{A^{2}-x^{2}}-\omega^{2} x\)
\({\omega x=\sqrt{A^{2}-x^{2}} \text { or } \omega^{2} x^{2}=A^{2}-x^{2}}\)
\({\omega^{2}=\frac{A^{2}-x^{2}}{x^{2}}=\frac{9-4}{4}=\frac{5}{4}}\)
\({\omega=\frac{\sqrt{5}}{2}}\)
Time period, \(T=\frac{2 \pi}{\omega}=2 \pi \cdot \frac{2}{\sqrt{5}}=\frac{4 \pi}{\sqrt{5}} \mathrm{s}\)