\(\frac{1}{3}m{\ell ^2}\). The maximum angular speed of the rod is when the rod is instantaneously vertical. The energy of the rod in this condition is \(\frac{1}{2}I{\omega ^2}\,\) where \(I\) is the moment of inertia of the rod about \(O.\) When the rod is in extreme portion, its angular velocity is zero momentarily. In this case, the energy of the rod is mgh where h is the maximum height to which the center of mass \((C.M)\) rises
\(\begin{array}{l}
\therefore \,mgh = \frac{1}{2}I{\omega ^2} = \frac{1}{2}\left( {\frac{1}{3}m{l^2}} \right){\omega ^2}\\
\Rightarrow h = \frac{{{\ell ^2}{\omega ^2}}}{{6g}}
\end{array}\)
ગરગડીને વર્તુળાકાર તકતી ધારો તથા દોરી એ ગરગડી પર સરકતી નથી એમ ધારો.