$L$ લંબાઇની ચેઇનને ટેબલ પર મૂકેલ છે.તેમાંથી લટકાવી શકાતી મહત્તમ લંબાઇ $l$ હોય,તો ચેઇન અને ટેબલ વચ્ચેનો ઘર્ષણાંક કેટલો થાય?
Easy
Download our app for free and get started
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
$10 \,kg$ દળનો એક બ્લોક એ ઢોળાવવાળી સપાટી પર $10 \,m / s$ ના અચળ તંત્ર સાથે ગતિ કરી રહે છે તો બ્લોક અને ઢોળાવવાળી સપાટી વચ્ચેનાં ગતિક ઘર્ષણાંકનું મુલ્ય ...... છે
એક સમતલ રસ્તા ઉપર $75 \,m$ ની ત્રિજ્યા ધરાવતો વળાંક છે. સરક્યા સિવાય વળાંક લઈ શકે તેવી કારની મહત્તમ ઝડપ $30\; m / s$ છે. હવે જો વળાંકની ત્રિજ્યા $48 \;m$ કરવામાં આવે અને પૈડા અને રસ્તા વચ્યે ધર્ષણાંક બદલાતો ના હોય તો મહત્તમ શક્ય ઝડપ............ $m / s$ થશે.
$500 \,kg$ નો ઘોડો $1500 \,kg $ના ગાડા ને $1 ms^{-1}$ ના પ્રવેગ થી ખેચે છે. જો ગતિક ઘર્ષણાંક $0.2$ તો ઘોડા દ્વારા આગળની દિશામાં ......... $N$ બળ લાગતું હશે.
એક સમતલ રોડ પર એક સાઇકલ સવાર $3\; m$ ત્રિજયાનો એક શાર્પ વર્તુળાકાર વળાંક લે છે $(g=10\ ms^{-2}) $. જો સાઇકલના ટાયર અને રોડ વચ્ચેનો સ્થિત ઘર્ષણાંક જો $0.2 $ હોય, તો નીચેનામાંથી કેટલી ઝડપે વળાંક લેતાં આ સાઇકલ લપસસે નહિ?
આકૃતિમાં દર્શાવ્યા અનુસાર, સમક્ષિતિજ સપાટી ઉપર રહેલ $10\,kg$ ના દળને સમક્ષિતિજ સાથે $30^{\circ}$ ના કોણે $F$ બળથી ખેંચવામાં આવે છે.$\mu_{ s }=0.25$ માટે,બળ $F$ ના $........\,N$ મહતમ મૂલ્ય સુધી બ્લોક સ્થિર રહેશે.[$g=10\,ms^{-2}$ આપેલ છે.]
આકૃતિમાં દર્શાવેલ ટ્રૉલી અને બ્લોકનો પ્રવેગ ($m/s^{2}$ માં ) શોધો જ્યાં ટ્રૉલી અને સપાટી વચ્ચેનો ઘર્ષણાક $0.05$ છે $\left( g =10\; m / s ^{2},\right.$ દોરીનું દળ અવગણ્ય છે અને બીજું કોઈ ઘર્ષણબળ લાગતું નથી).
એક ચક્ર સમક્ષિતિજ સમતલ માં તેની સમિતિ ની અક્ષ ફરતે $3.5$ ભ્રમણ પ્રતિ સેકન્ડ ના દરે ફરે છે. તેની ભ્રમણાક્ષ થી $1.25\,cm$ અંતરે એક સિક્કો સ્થિર રહે છે. તો સિક્કા અને ચક્ર વચ્ચેનો ઘર્ષણાંક કેટલો હશે? $(g\, = 10\,m/s^2)$