\(\therefore \text { Dimension of } \mathrm{b}=\left[\mathrm{L}^3\right]\)
\(\&[\mathrm{P}]=\left[\frac{\mathrm{a}}{\mathrm{V}^2}\right]\)
\({[\mathrm{a}]=\left[\mathrm{PV}^2\right]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^6\right]}\)
\(\text { Dimension of } \mathrm{a}=\left[\mathrm{ML}^5 \mathrm{~T}^{-2}\right]\)
\(\therefore \mathrm{ab}^{-1}=\frac{\left[\mathrm{ML}^5 \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^3\right]}=\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]\)