$\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$ નાં પૂર્ણાક ઉકેલો $x$ ની સંખ્યા $..........$ છે.
JEE MAIN 2023, Advanced
Download our app for free and get startedPlay store
a
\(\log _{x+\frac{7}{2}}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0\)

Feasible region : \(x+\frac{7}{2}>0 \Rightarrow x > -\frac{7}{2}\)

And \(x+\frac{7}{2} \neq 1 \Rightarrow x \neq-\frac{5}{2}\)

And \(\frac{x-7}{2 x-3} \neq 0 \quad\) and \(2 x-3 \neq 0\)

\(\Downarrow\)

\(x \neq 7\)

\(x \neq \frac{3}{2}\)

Taking intersection : \(x \in\left(\frac{-7}{2}, \infty\right)-\left\{-\frac{5}{2}, \frac{3}{2}, 7\right\}\)

Now \(\log _a b \geq 0\) if \(a > 1\) and \(b \geq 1\)

Or

\(a \in(0,1)\) and \(b \in(0,1)\)

\(\text { C-I; } \quad x+\frac{7}{2}>1 \text { and }\left(\frac{x-7}{2 x-3}\right)^2 \geq 1\)

\(x > -\frac{5}{2} \quad(2 x-3)^2-(x-7)^2 \leq 0\)

\((2 x-3+n-7)(2 x-3-x+7) \leq 0\)

\((3 x-10)(x+4) \leq 0\)

\(\quad x \in\left[-4, \frac{10}{3}\right]\)

\(\text { Intersection : } x \in\left(\frac{-5}{2}, \frac{10}{3}\right]\)

\(\text { C-II } x+\frac{7}{2} \in(0,1) \text { and }\left(\frac{x-7}{2 x-3}\right)^2 \in(0,1)\)

\(0 < x+\frac{7}{2} < 1 \quad \quad\left(\frac{x-7}{2 x-3}\right)^2 < 1\)

\(-\frac{7}{2} < x < \frac{-5}{2} \quad(x-7)^2<(2 x-3)^2\)

\(x \in(-\infty,-4) \cup\left(\frac{10}{3}, \infty\right)\)

No common values of \(x\).

Hence intersection with feasible region

We get \(x \in\left(\frac{-5}{2}, \frac{10}{3}\right]-\left\{\frac{3}{2}\right\}\)

Integral value of \(x\) are \(\{-2,-1,0,1,2,3\}\)

No. of integral values \(=6\)

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    ${1 \over {\sqrt {(11 - 2\sqrt {30} )} }} - {3 \over {\sqrt {(7 - 2\sqrt {10} )} }} - {4 \over {\sqrt {(8 + 4\sqrt 3 )} }} = $
    View Solution
  • 2
    ધારોકે $a,b,c$ એ એવી ત્રણ ભિન્ન વાસ્તવિક સંખ્યાઓ છે કે જેથી $(2 a)^{\log _e a}=(b c)^{\log _e b}$ અને $b^{\log _e 2}=a^{\log _e c}$ તો $6 a+5 b c=..........$
    View Solution
  • 3
    જો $x, y, z \in R^+$ એવા છે કે જેથી $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ અને ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ થાય તો ${\log _x}z$ ની કિમત મેળવો .
    View Solution
  • 4
    ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}= . .$ . .
    View Solution
  • 5
    જો ${a^x} = {b^y} = {(ab)^{xy}},$ તો $x + y = $
    View Solution
  • 6
    સમીકરણ $\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ નો ઉકેલગણ $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ હોય તો $(a + b)$ ની કિમત મેળવો. 
    View Solution
  • 7
    ${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $
    View Solution
  • 8
    જો $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2$ તો $A = . . . .$
    View Solution
  • 9
    જો ${a^x} = b,{b^y} = c,{c^z} = a,$ તો $xyz = . . . .$
    View Solution
  • 10
    જો ${{2x + 3} \over {(x + 1)(x - 3)}} = {a \over {x + 1}} + {b \over {(x - 3)}}$, તો $a + b$
    View Solution