જો ${a^x} = {b^y} = {(ab)^{xy}},$ તો $x + y = $
Medium
Download our app for free and get startedPlay store
b
(b) \({a^x} = {b^y} = {(ab)^{xy}}\)

\( \Rightarrow \)\(x\ln a = y\ln b = xy\ln (ab) = k\,{\rm{(say)}}\)

\(\ln a = {k \over x},\,\,\ln b = {k \over y}\)

\(\ln (a\,b) = {k \over {xy}}\)\( \Rightarrow \) \(\ln a + \ln b = {k \over {xy}}\)

\( \Rightarrow\) \({k \over x} + {k \over y} = {k \over {xy}}\)

\( \Rightarrow \) \({1 \over x} + {1 \over y} = {1 \over {xy}}\) \( \Rightarrow \) \({{x + y} \over {xy}} = {1 \over {xy}}\);

\(\therefore x + y = 1\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    જો ${a^x} = b,{b^y} = c,{c^z} = a,$ તો $xyz = . . . .$
    View Solution
  • 2
    સમીકરણ $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ નો ઉકેલ મેળવો.
    View Solution
  • 3
    ધારો કે $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c,$  $a, b, c \in Z$ પુર્ણાકો છે.$e=\sum_{n=0}^{\infty} \frac{1}{n !} $ હોય તો $a^2-b+c$ ની કિમંત મેળવો.
    View Solution
  • 4
    ${\log _2}.{\log _3}....{\log _{100}}{100^{{{99}^{{{98}^{{.^{{.^{{{.2}^1}}}}}}}}}}}= . . . $.
    View Solution
  • 5
    $\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$ નાં પૂર્ણાક ઉકેલો $x$ ની સંખ્યા $..........$ છે.
    View Solution
  • 6
    સમીકરણ $\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ નો ઉકેલગણ $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ હોય તો $(a + b)$ ની કિમત મેળવો. 
    View Solution
  • 7
    ${{(x - a)(x - b)} \over {(x - c)(x - d)}} = {A \over {x - c}} - {B \over {(x - d)}} + C$, તો $C = . . .. $
    View Solution
  • 8
    જો ${x^y} = {y^x},$ તો ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ કે જ્યાં $k = . . . . $
    View Solution
  • 9
    જો ${{2x + 3} \over {(x + 1)(x - 3)}} = {a \over {x + 1}} + {b \over {(x - 3)}}$, તો $a + b$
    View Solution
  • 10
    ${1 \over {\sqrt {(11 - 2\sqrt {30} )} }} - {3 \over {\sqrt {(7 - 2\sqrt {10} )} }} - {4 \over {\sqrt {(8 + 4\sqrt 3 )} }} = $
    View Solution