By force balancing in vertical direction
\(S_F=2 T \sin \theta\)
\(S_F=2 T \theta\) \(\left\{\begin{array}{l}\because \theta \text { is small } \\ \sin \theta=\theta\end{array}\right.\)
\(S \times 2 r \times 2 \theta=2 \times T \times \theta\)
\(S \times 2 r=\) Tension
\(S \times d=\) Tension \(\left\{\begin{array}{l}r \text {-radius } \\ d \text {-diameter }\end{array}\right.\)
\(\because S=T\)
So, Tension \(=T d\) \(\left\{\begin{array}{l}\text { Where, } \\ S_F=\text { Force due to surface tension } \\ T=\text { Tension in string } \\ \theta=\text { Small angle } \\ S=\text { Surface tension }\end{array}\right.\)