\(\vec{\tau}=\vec{r} \times \vec{F}\)
To, we can find Torque by finding the cross product of \(\vec{r}\) and \(\vec{F}\)
We have:
\(\vec{r}=3 \hat{\imath}+2 \hat{\jmath}+3 \hat{k} m\)
\(\vec{F}=2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k} N\)
So, torque will be:
\(\vec{\tau}=\left|\begin{array}{ccc}{\hat{\imath}} & {\hat{\jmath}} & {\hat{k}} \\ {3} & {2} & {3} \\ {2} & {-3} & {4}\end{array}\right|\)
\(\Longrightarrow \vec{\tau}=\hat{\imath}((2)(4)-(-3)(3))-\hat{\jmath}((3)(4)-(2)(3))+\hat{k}((3)(-3)-(2)(2))\)
\(\Longrightarrow \vec{\tau}=\hat{\imath}(8+9)-\hat{\jmath}(12-6)+\hat{k}(-9-4)\)
\(\Longrightarrow[\vec{\tau}=17 \hat{\imath}-6 \hat{\jmath}-13 \hat{k}, N m]\)
This is the torque of the force acting about Origin.