$NO_{(g)} + Br_{2 (g)} $ $\rightleftharpoons$ $ NOBr_{2 (g)} , NOBr_{2 (g)} + NO_{(g)}\rightarrow 2 NOBr_{(g)}$ જો બીજી પ્રક્રિયાએ વેગનિર્ણાયક તબક્કો હોય તો પ્રક્રિયાનો ક્રમ $NO_{(g)} $ ના સંદર્ભમાં........ હશે.
\(\,\therefore \,kc\,= \,\frac{{[NOB{r_2}]}}{{[NO][B{r_{^2}}]}}\)
પ્રથમ પ્રક્રિયા સંતુલન માં હોવાથી
\(\frac{{- dc}}{{dt}} = k \times {k_c} \times {[NO]^2}[B{r_2}] = k'{[NO]^2}[Br{}_2]\) \(NO_{(g)}\) ના સંદર્ભમાં પ્રક્રિયા ક્રમ \(2\) છે.
$(i)\,\,$ફક્ત $A$ ની શરૂઆતની સાંદ્રતા બમણી કરતા પ્રક્રિયાનો દર બમણો થાય છે.
$(ii)\,\,$$A$ અને $B$ બંનેની શરૂઆતની સાંદ્રતા બમણી કરતા પ્રક્રિયાના દરમાં $8$ ના ગુણાંકમાં ફેરફાર થાય છે.
આ પ્રક્રિયાનો દર નીચે પ્રમાણે છે.
$\gamma_{1} A +\gamma_{2} B \rightarrow \gamma_{3} C +\gamma_{4} D$
જ્યાં $v_{1}, v_{2}, v_{3}$ અને $v_{4}$ એ પૂર્ણાંક છે. $(i.e.$ $\left.1,2,3,4 \ldots . .\right)$
$10$ સેકન્ડોના અંતરાલ માં $C$ ની સાંદ્રતા $10\,m\,mol\,dm ^{-3}$ માંથી $20\,m\,mol\,dm ^{-3}$ માં ફેરફાર થાય છે.$D$નો દશ્ય થવાનો વેગ એ $B$ના અદશ્ય થવાના વેગ કરતા $1.5$ ગણો છે, ને $A$ ના અદશ્ય થવાના વેગ કરતા બમણો છે.પ્રાયોગિક રીતે $D$ના દશ્ય થવાનો વેગ $9,m\,mol\,dm ^{-3} \,s ^{-1}$ શોધવામાં આવ્યો.તેથી પ્રક્રિયાનો વેગ $\dots\dots\,\,m\,mol$$dm ^{-3} s ^{-1}.$