\( \Rightarrow \,\,m\,\, = \,\,\frac{{4\,\, \times \,{{10}^{ - 3}}kg}}{{6.023\,\, \times \,\,{{10}^{23}}}}\,\, = \,\,0.664\,\, \times \,\,{10^{ - 26}}kg\) અને
\(T\,\, = \,\,273\,\, + \,\,27 \, = \,\,300\,\,K\)
આથી\( \,\lambda \,\, = \,\, \frac{{6.63\,\, \times \,\,1{0^{ - 34}}}}{{\sqrt {3\,\,(0.664\,\, \times \,\,{{10}^{ - 26}})\,\,(1.38\,\, \times \,\,{{10}^{ - 23}})\,300} }}\)
\(m\, = \,\,7.3\,\, \times \,\,{10^{ - 11}}m\)
જો \(r\) એ મધ્યમાન અંતર અને \(V\) આણીવ્ય કદ હોય તો , \(V\, = \,\,{r^3}N\,\) અથવા
\(r \,{(V/N)^{1/3}}\)
વાયુ ના એક અણુ માટે, \(PV\, = \,\,RT \,\, \Rightarrow \,\,\,V\,\, = \,\,RT/\,P\)
આથી \(,\,r\, = \,\,{\left( {\frac{{RT/P}}{N}} \right)^{1/3}}\, = \,\,{\left( {\frac{{{k_B}T}}{P}} \right)^{1/3}}\,\)
\( \Rightarrow \,\,r\,\, = \,\,{\left( {\frac{{(1.38\,\, \times \,\,{{10}^{ - 23}})\,300}}{{1.01\,\, \times \,\,{{10}^5}}}} \right)^{1/3}}\,\, = \,\,3.4\,\, \times \,\,{10^{ - 9}}m\)
આથી \(\,\,\frac{r}{\lambda }\, = \,\,\frac{{3.4\,\, \times \,{{10}^{ - 9}}m}}{{7.3\,\, \times \,\,{{10}^{ - 11}}m}}\,\,\, \approx \,\,50\)
એટલે કે \(r\,\, = \,\,50\,\,\lambda \,,\,\,\,i.\,e.,\,\,\,\,r\,\, > \,\, > \,\,\lambda \)