Run | $[A]/mol\,L^{-1}$ | $[B]/mol\,L^{-1}$ | $D$ ઉત્પન્ન થવાનો શરૂઆતનો દર $mol\,L^{-1}\,min^{-1}$ |
$I.$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
$II.$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
$III.$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
$IV.$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
ઉપરની વિગત પરથી નીચેનામાંથી ક્યું સાચુ છે ?
and with respect to $\mathrm{B}$ is $y$.
Thus,
rate $=\mathrm{k}[A]^{x}[B]^{y}$
($x$ and $y$ are stoichiometric coefficient)
For the given cases,
$I$. rate $=\mathrm{k}(0.1)^{x}(0.1)^{y}=6.0 \times 10^{-3}$
$II$. rate $=\mathrm{k}(0.3)^{x}(0.2)^{y}=7.2 \times 10^{-2}$
$III$. rate $=\mathrm{k}(0.3)^{x}(0.40)^{y}=2.88 \times 10^{-1}$
$IV$. rate $=\mathrm{k}(0.34)^{x}(0.1)^{y}=2.40 \times 10^{-2}$
Dividing Eq. $(I)$ by Eq. $(IV)$, we get
$\left(\frac{0.1}{0.4}\right)^{x}\left(\frac{0.1}{0.1}\right)^{y}$
$\frac{6.0 \times 10^{-3}}{2.4 \times 10^{-2}}$
$\left(\frac{1}{4}\right)^{x} =\left(\frac{1}{4}\right)^{1}$
$\therefore x=1$
On dividing Eq. $(II)$ by Eq. $(III)$, we get
$\left(\frac{0.3}{0.3}\right)^{x}\left(\frac{0.2}{0.4}\right)^{y}=\frac{7.2 \times 10^{-2}}{2.88 \times 10^{-1}}$
$\left(\frac{1}{2}\right)^{y}=\frac{1}{4}$
$\left(\frac{1}{2}\right)^{y}=\left(\frac{1}{2}\right)^{2}$
$\therefore y=2$
Thus, rate law is,
$\text {rate} =k[A]^{1}[B]^{2}$
$=k[A][B]^{2}$
$1$. $[A]$ $0.012$, $[B]$ $0.0351\rightarrow $ પ્રારંભિક દર $ = 0.10$
$2$. $[A]$ $0.024$, $[B]$ $0.070\rightarrow $ પ્રારંભિક દર $= 1.6$
$3$. $[A]$ $0.024$, $[B]$ $0.035\rightarrow $ પ્રારંભિક દર $ = 0.20$
$4$. $[A]$ $0.012$ , $[B]$ $0.070\rightarrow $ પ્રારંભિક દર $ = 0.80$
(આપેલ : $\log 2=0.30, \log 3=0.48$ )