(લો : $\ln 5=1.6094;\left.R =8.314\, J mol ^{-1} K ^{-1}\right)$
As per question \(K _{ T _{2}}=5 K _{ T _{1}}\) as molecules activated are increased five times so k will increases \(5\) times
Now
\(\ln \left(\frac{ K _{ T _{2}}}{ K _{ T _{1}}}\right)=\frac{ Ea }{ R }\left(\frac{1}{ T _{1}}-\frac{1}{ T _{2}}\right)\)
\(\ln 5=\frac{ Ea }{ R }\left(\frac{15}{300 \times 315}\right)\)
So \(\quad Ea =\frac{1.6094 \times 8.314 \times 300 \times 315}{15}\)
\(Ea =84297.47\) Joules/mole

$\left( {{\rm{R}} = 8.3\;{\rm{Jmo}}{{\rm{l}}^{ - 1}}{{\rm{K}}^{ - 1}},\ln \left( {\frac{2}{3}} \right) = 0.4,\left. {{e^{ - 3}} = 4.0} \right)} \right.$
$2 A + B \longrightarrow C + D$
| પ્રયોગ | $[ A ] / molL ^{-1}$ | $[ B ] / molL ^{-1}$ | પ્રાથમિક $rate/molL$ $^{-1}$ $\min ^{-1}$ |
| $I$ | $0.1$ | $0.1$ | $6.00 \times 10^{-3}$ |
| $II$ | $0.1$ | $0.2$ | $2.40 \times 10^{-2}$ |
| $III$ | $0.2$ | $0.1$ | $1.20 \times 10^{-2}$ |
| $IV$ | $X$ | $0.2$ | $7.20 \times 10^{-2}$ |
| $V$ | $0.3$ | $Y$ | $2.88 \times 10^{-1}$ |
આપેલા ટેબલ માં $X$ અને $Y$ અનુક્રમે શું હશે ?
ઉપરોક્ત પ્રથમ ક્રમની પ્રક્રિયામાં $300\, {~K}$ પર $120$ મિનિટમાં ${PCl}_{5}$ની સાંદ્રતા પ્રારંભિક સાંદ્રતા $50\, mol\,{L}^{-1}$ થી $10\, {~mol} \,{~L}^{-1}$ થી ઘટે છે. $300\, {~K}$ પર પ્રક્રિયા માટે દર અચળાંક ${X}$ $\times 10^{-2} \,{~min}^{-1}$ છે. $x$ ની કિંમત $......$ છે.
$[$ આપેલ છે: $\log 5=0.6989]$