$0.03=\mathrm{k}[\mathrm{A}]_0 \mathrm{e}^{-\mathrm{k} \times 20 \times 60}$ $...(2)$
$(1) /(2)$
$\frac{4}{3}=\mathrm{e}^{600 \mathrm{k}(2-1)}$
$\frac{4}{3}=\mathrm{e}^{600 \mathrm{k}}$
$\ln \frac{4}{3}=600 \mathrm{k}$
$\ln \frac{4}{3}=600 \times \frac{\ln 2}{\mathrm{t}_{1 / 2}}$
$\mathrm{t}_{1 / 2}=600 \frac{\ln 2}{\ln \frac{4}{3}}$sec
$\mathrm{t}_{1 / 2}=600 \times \frac{\log 2}{\log 4-\log 3} \text { sec. }=10 \times \frac{0.3010}{0.6020-0.477} \mathrm{~min}$
$\mathrm{t}_{1 / 2}$
Ans. $24$
$2 {~K}_{2} {Cr}_{2} {O}_{7}+8 {H}_{2} {SO}_{4}+3 {C}_{2} {H}_{6} {O} \rightarrow 2 {Cr}_{2}\left({SO}_{4}\right)_{3}+$
$3 {C}_{2} {H}_{4} {O}_{2}+2 {~K}_{2} {SO}_{4}+11 {H}_{2} {O}$
જો ${Cr}_{2}\left({SO}_{4}\right)_{3}$નો દેખાવનો દર $2.67 \,{~mol}$ $\min ^{-1}$ ચોક્કસ સમયે, ${C}_{2} {H}_{6} {O}$નો એક જ સમયે ગાયબ થવાનો દર $....$ ${mol}\, {min}^{-1}$ છે. (નજીકના પૂર્ણાંકમાં)