$\mathop {2{N_2}{O_5}}\limits_{{\rm{(in}}\,\,{\rm{CC}}{{\rm{l}}_4}{\rm{)}}} \to \mathop {4N{O_2}}\limits_{{\rm{(in}}\,\,{\rm{CC}}{{\rm{l}}_4}{\rm{)}}} + {O_2}$
${\log _{10}}\,\left[ { - \frac{{d\left[ A \right]}}{{dt}}} \right] = {\log _{10}}\,\left[ {\frac{{d\left[ B \right]}}{{dt}}} \right] + 0.3010$
${O_3} \rightleftharpoons {O_2} + \left[ O \right]$
${O_3} + \left[ O \right] \to 2{O_2}$ (slow)
તો $2{O_3} \to 3{O_2}$ પ્રક્રિયાનો કમ જણાવો.
$\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
$23 \mathrm\ {sec}$ પછી જો વાયુઆનું કુલ દબાણ $200\ torr$ મળી આવેલ હોય અને ખુબજ લાંબા સમય બાદ $A$ નાં સંપૂર્ણ વિધટન પર $300\ torr$ મળી આવેલ હોય તો આપેલ પ્રક્રિયા નો વેગ અચળાંક ......... $\times 10^{-2} \mathrm{~s}^{-1}$ છે. [આપેલ : $\left.\log _{10}(2)=0.301\right]$
$[A] (mol\,L^{-1})$ | $[B] (mol\,L^{-1})$ | પ્રક્રિયાનો પ્રારંભિક વેગ $(mol\, L^{-1}\,s^{-1} )$ |
$0.05$ | $0.05$ | $0.045$ |
$0.10$ | $0.05$ | $0.090$ |
$0.20$ | $0.10$ | $0.72$ |