\(\mathrm{t}=\frac{2.303}{10^{-2}} \log \frac{20}{5} \)\(\Rightarrow \mathrm{t}=138.6\, \mathrm{sec}\)
$-\frac{d[{{N}_{2}}{{O}_{5}}]}{dt}={{K}_{1}}[{{N}_{2}}{{O}_{5}}]$ ,
$\frac{d[N{{O}_{2}}]}{dt}={{k}_{2}}[{{N}_{2}}{{O}_{5}}]$ ,
$\frac{d[{{O}_{2}}]}{dt}={{K}_{3}}[{{N}_{2}}{{O}_{5}}]$
તો $K_1$, $K_2$ અને $K_3 $ વચ્ચેનો સંબંધ શું થાય?
Expt. No. | $(A)$ | $(B)$ | પ્રારંભિક દર |
$1$ | $0.012$ | $0.035$ | $0.10$ |
$2$ | $0.024$ | $0.070$ | $0.80$ |
$3$ |
$0.024$ |
$0.035$ | $0.10$ |
$4$ | $0.012$ | $0.070$ | $0.80$ |