\( g_q=g\left(1-\frac{h}{R}\right) \)
\( g_p=g_q \)
\( \frac{g}{\left(1+\frac{h}{R}\right)^2}=g\left(1-\frac{h}{R}\right) \)
\( \left(1-\frac{h^2}{R^2}\right)\left(1+\frac{h}{R}\right)=1\)
Take \(\frac{\mathrm{h}}{\mathrm{R}}=\mathrm{x}\)
So
\( \mathrm{x}^3-\mathrm{x}+\mathrm{x}^2=0 \)
\( \mathrm{x}=\frac{\sqrt{5}-1}{2} \)
\( \mathrm{~h}=\frac{\mathrm{R}}{2}(\sqrt{5}-1)\)