At the same point acceleration due to gravity,
\({g_h}\) \(= 6\,ms^{-2}\)
\(R=6400\, km=6.4\times10^6\,m\)
We know, \({V_h} = - \frac{{GM}}{{\left( {R + h} \right)}}\)
\({g_h} = \frac{{GM}}{{{{\left( {R + h} \right)}^2}}} = - \frac{{{V_h}}}{{R + h}} \Rightarrow R + h = - \frac{{{V_h}}}{{{g_h}}}\)
\(\therefore \,\,h = - \frac{{{V_h}}}{{{g_h}}} - R = \frac{{\left( { - 5.4 \times {{10}^7}} \right)}}{6} - 6.4 \times {10^6}\)
\( = 9 \times {10^6} - 6.4 \times {10^6} = 2600\,Km\)