\(\therefore\)\({R_1} = {R_0}{e^{ - \lambda {t_1}}}\) અને \({{\text{R}}_{\text{2}}} = {R_0}{e^{ - \lambda {t_2}}}\)
\(\therefore\)\(\frac{{{R_1}}}{{{R_2}}} = \frac{{{R_0}{e^{ - \lambda {t_1}}}}}{{{R_0}{e^{ - \lambda {t_2}}}}} \)
\(= {e^{ - \lambda {t_1}}}{e^{ - \lambda {t_2}}} = {e^{ - \lambda ({t_1} - {t_2})}}\)
\(\therefore\) \({R_1} = {R_2}{e^{ - \lambda ({t_1} - {t_2})}}\)
(એવોગેડ્રો નંબર$= 6.023\times10^{23}\,/g.\, mole$)
(જ્યાં $\lambda$ ક્ષય નિયાતાંક છે)