\({y_1} = a\sin \,\left( {\omega \,t - \frac{\pi }{4}} \right)\); \({y_2} = a\sin \omega \,t\) and
\({y_3} = a\sin \,\left( {\omega \,t + \frac{\pi }{4}} \right)\).
On superimposing, resultant SHM will be \(y = a\;\left[ {\sin \,\left( {\omega \,t - \frac{\pi }{4}} \right) + \sin \omega \,t + \sin \,\left( {\omega \,t + \frac{\pi }{4}} \right)} \right]\)
\( = a\;\left[ {2\sin \omega \,t\cos \frac{\pi }{4} + \sin \omega \,t} \right]\)
\( = a\;[\sqrt 2 \sin \omega t + \sin \omega t] = a\;(1 + \sqrt 2 )\sin \omega \,t\)
Resultant amplitude =\((1 + \sqrt 2 )a\)
Energy is \(S.H.M.\) \(\propto\) (Amplitude)\(^2\)
\(\frac{{{E_{{\rm{Resultant}}}}}}{{{E_{{\rm{Single}}}}}} = {\left( {\frac{A}{a}} \right)^2} = {(\sqrt 2 + 1)^2} = (3 + 2\sqrt 2 )\)
==> \({E_{{\rm{Resultant}}}} = (3 + 2\sqrt 2 ){E_{{\rm{Single}}}}\)
$(A)\;y= sin\omega t-cos\omega t$
$(B)\;y=sin^3\omega t$
$(C)\;y=5cos\left( {\frac{{3\pi }}{4} - 3\omega t} \right)$
$(D)\;y=1+\omega t+{\omega ^2}{t^2}$