==> \(\sin \omega \,t = \frac{{{y_1}}}{{{a_1}}}\) ... (i)
then second equation will be \({y_2} = {a_2}\sin \left( {\omega \,t + \frac{\pi }{2}} \right)\)
\( = {a_2}\,\left[ {\sin \omega \,t\cos \frac{\pi }{2} + \cos \omega \,t\sin \frac{\pi }{2}} \right] = {a_2}\cos \omega \,t\)
==> \(\cos \omega \,t = \frac{{{y_2}}}{{{a_2}}}\) ... (ii)
By squaring and adding equation (i) and (ii)
\({\sin ^2}\omega \,t + {\cos ^2}\omega \,t = \frac{{y_1^2}}{{a_1^2}} + \frac{{y_2^2}}{{a_2^2}}\)
==> \(\frac{{y_1^2}}{{a_1^2}} + \frac{{y_2^2}}{{a_2^2}} = 1\); This is the equation of ellipse.