\(\mathrm{R}_{2}=\frac{(1.2 \rho)(1.2 \mathrm{L})}{\mathrm{A}}=\frac{1.44 \rho \mathrm{L}}{\mathrm{A}}\)
\(\mathrm{R}_{3}=\frac{(0.9 \mathrm{\rho })(0.9 \mathrm{L})}{\mathrm{A}}=\frac{0.81 \rho \mathrm{L}}{\mathrm{A}}\)
\(\mathrm{R}_{4}=\frac{\rho(1.5 \mathrm{L})}{\mathrm{A}}=\frac{1.5 \mathrm{\rho L}}{\mathrm{A}}\)
\(\therefore \) \(\mathrm{R}_{3}<\mathrm{R}_{1}<\mathrm{R}_{2}<\mathrm{R}_{4}\)
For constant potential, \(\mathrm{P} \propto \frac{1}{\mathrm{R}}\)
\(\therefore P_{3} < P_{1} < P_{2} < P_{4}\)