$N_{2}=3.0 \times 10^{-3} M$
$O_{2}=4.2 \times 10^{-3} M$
અને $N O=2.8 \times 10^{-3} M$
આપેલ પ્રક્રિયા માટે બંધ કરેલા વાસણમાં $800 \,K$ અને $1$ $atm$ દબાણે $K_{p}$ ......... $atm$ હશે ?
$N_{2}(g)+O_{2}(g) \rightleftharpoons 2 N O(g)$
\(O_{2}=4.2 \times 10^{-3} M\)
and \(N O=2.8 \times 10^{-3} M\)
For the given reaction,
\(N_{2}(g)+O_{2}(g) \rightleftharpoons 2 N O(g)\)
equilibrium constant \(K_{C}\) can be written as
\(K_{C}=\frac{[N O]^{2}}{\left[N_{2}\right]\left[O_{2}\right]}\)
\(\therefore K_{C}=\frac{\left(2.8 \times 10^{-3} M\right)^{2}}{\left(3.0 \times 10^{-3} M\right)\left(4.2 \times 10^{-3} M\right)}=0.622\)
\(\because K_{p}=K_{C} \cdot(R T)^{\Delta n}\)
\(\Delta n=\) Number of moles of gaseous products number of moles of gaseous reactants
\(\Delta n=2-2=0\)
\(\therefore K_{p}=K_{C^{.}}(R T)^{o}\)
\(K_{p}=K_{C}\) or, \(K_{p}=0.622\) \(atm\)