\(m _1=\frac{ v }{ u }\) and
\(m _2=\frac{ u }{ V }\)
Thus, \(m_1 \times m_2=1\)
\(m _1- m _2=\frac{ v }{ u }-\frac{ u }{ v }\)
\(m _1- m _2=\frac{ V ^2- u ^2}{ uv }\)
From the figure,
Given, \(v-u=x\)
\(\Rightarrow m _1- m _2=\frac{( v + u )( v - u )}{ uv }=\frac{( v + u ) x }{ uv }\)
Using lens formula,
\(\frac{1}{f}=\frac{1}{V}-\frac{1}{u}\)
For Position 1, we have
Object Distance \(=- u\)
Image Distance \(=v\)
\(\frac{1}{f}=\frac{1}{v}-\frac{1}{-u}\)
\(\frac{1}{f}=\frac{u+v}{u v}\)
\(\Rightarrow m _1- m _2=\frac{( v + u ) x }{ uv }=\frac{1}{ f } \times x\)
\(\Rightarrow m _1- m _2=\frac{ x }{ f }\)
\(f=\frac{x}{m_1-m_2}\)