Force, \(F=-\frac{d U}{d r}=-k r\)
For circular motion \(\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\mathrm{kr}\) .... \((i)\)
And \({ mvr }=\frac{n h}{2 \pi}\) .... \((ii)\)
\({ \Rightarrow {r^2} = \frac{{{\text{nh}}}}{{2\pi \sqrt {{\text{km}}} }}}\)
\({ \Rightarrow {\text{r}} \propto \sqrt {\text{n}} }\)
Total energy, \(E=k+U\)
\( = \frac{1}{2}m{v^2} + \frac{1}{2}k{r^2}\)
\( = \frac{1}{2}k{r^2} + \frac{1}{2}k{r^2}\) [From equation \((i)\)]
\(E = k{r^2}\)
\( \Rightarrow \,\,E\, \propto \,\,n\)