\(\frac{h c}{\lambda}=21.76 \times 10^{-19}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]\)
Where, \(h=\) Planck's constant \(=6.6 \times 10^{-34} \,Js\)
\(c=\) Speed of light \(=3 \times 10^{8} \,m / s\)
\((n_{1} \text { and } n_{2}\) are integers)
The shortest wavelength present in the Paschen series of the spectral lines is for values \(n_{1}=3\)
and \(n_{2}=\infty\)
\(\frac{h c}{\lambda}=21.76 \times 10^{-19}\left[\frac{1}{(3)^{2}}-\frac{1}{(\infty)^{2}}\right]\)
\(\lambda=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8} \times 9}{21.76 \times 10^{-19}}\)
\(=8.189 \times 10^{-7} \,m\)
\(=818.9 \;nm\)