Comparing it with the standard equation of wave
\(\mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{a} \cos (\mathrm{kx}-\omega \mathrm{t})\) we get
\(\mathrm{k}=\alpha\) and \(\omega=\beta\)
\(\therefore \frac{2 \pi}{\lambda}=\alpha \quad\) and \(\quad \frac{2 \pi}{\mathrm{T}}=\beta\)
\(\therefore \alpha=\frac{2 \pi}{0.08}=25 \pi \quad\) and \(\quad \beta=\frac{2 \pi}{2}=\pi\)
$ {z_1} = A\sin (kx - \omega \,t) $ , $ {z_2} = A\sin (kx + \omega \,t) $ , $ {z_3} = A\sin (ky - \omega \,t) $ .