\(\therefore \,\,\,0.2905 = {E^0}_{cell} - \frac{{0.0592}}{2}\log \left( {\frac{{{{10}^{ - 2}}}}{{{{10}^{ - 3}}}}} \right)\)
\(\therefore \,\,{E^0}_{cell} = {E^0}_{cell} - \frac{{0.0592}}{2}{\log _{10}}10\)
સંતુલન માટે \(E_{cell} = 0\)
\(E^{0}_{cell} = 0.2905 + 0.0296\)
\(E^{0}_{cell} = 0.32 \,V\)
હવે \({E_{cell}} = {E^0}_{cell} - \frac{{0.0592}}{n}\log \,{K_c}\)
\(\therefore 0 = 0.32 - \frac{{0.0592}}{2}\log \,{K_c}\)
\(\therefore \,\,\,0.32 - \frac{{0.0592}}{2}\log \,{K_c}\)
\(\therefore \log {K_c} = \frac{{0.32}}{{0.0295}}\)
\({K_c} = 10\left( {\frac{{0.32}}{{0.0295}}} \right)\)
$V^{2+}(aq) + 2e^{-} \rightarrow V$, $E^o = -1.19\,V; $
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe$, $E^o = -0.04\,V:$
$Au^{3+}(aq) + 3e^{-} \rightarrow Au$, $E^o = + 1.40\,V;$
$Hg^{2+}(aq) + 2e^{-} \rightarrow Hg$, $E^o = + 0.86\,V$
જલીય દ્રાવણમાં $NO^-_{3}$ દ્રારા કયા ધાતુઓના યુગ્મનું ઓક્સિડેશન નથી થતુ?
[આપેલ : $1\,F =96500\,C\,mol ^{-1},$ $Fe$નું પરમાણ્વીય દળ $= 56\,g\,mol ^{-1}$ ]