or \(\quad \mathrm{R}^{\prime}=\frac{20 \mathrm{x}}{10+2 \mathrm{x}}\)
\(\mathrm{R}_{\mathrm{BC}}=\frac{20 \mathrm{x}}{10+2 \mathrm{x}}+20-\mathrm{x}+20-\mathrm{x}\) ....\((i)\)
or \(\frac{20 x}{10+2 x}+40=2 x\)
Solving we get
\(x=10\, \Omega\)
Putting the value of \(x=10\, \Omega\) in equation \(( i )\) We get
\( R_{B C} =\frac{20 \times 10}{10+2 \times 10}+20-10+20-10 \)
\(=\frac{80}{3}=26.7\, \Omega \)
(કોપરની અવરોધકતા $=1.7 \times 10^{-8}\, \Omega \,{m}$, એલ્યુમિનિયમની અવરોધકતા $=2.6 \times 10^{-8}\, \Omega \,{m}$ લો)