Potential energy per unit volume \(=\frac{1}{2} \times\) stress \(\times\) strain
\(=\frac{1}{2} \times \frac{F}{A} \times \frac{\Delta L}{L}\)
So, Potential energy \(=\) potential energy per unit volume \(\times\) volume
\(=\frac{1}{2} \times \frac{F \cdot \Delta L}{A \cdot L} \times A \cdot L\) \(\{\) Volume \(=\) Length \(\times\) cross-sectional area \(\}\)
\(\Delta U=\frac{1}{2} \cdot F \cdot \Delta L\) \(\left\{\begin{array}{l}F=10 \times 10 \,N \\ \Delta L=10 \,mm =10 \times 10^{-3} \,m \end{array}\right.\)
Substituting values
\(\Delta U=\frac{1}{2} \times 100 \times \frac{10}{1000}\)
\(\Delta U=0.5 \,J\)