From the above figure,
\(Mg \sin \theta- f = ma _{ cm }\)
As we know that,
\(\tau_{ cm }= I _{ cm } \alpha\)
And,
\(f =\frac{ MR ^{2}}{2}\left(\frac{ a _{ cm }}{ R ^{2}}\right)\)
\(=\frac{ Ma _{ cm }}{2}\)
\(a_{c m}=\frac{2 f_{R}}{M}\)
Therefore,
\(mg \sin \theta- f = M \left(\frac{2 f }{ M }\right)\)
\(f =\frac{ mg \sin \theta}{3}\)
Substitute the values.
\(f =\frac{1}{2}\left(\frac{10}{3}\right)\left(\frac{1}{\sqrt{2}}\right)\)
\(=\frac{5}{3 \sqrt{2}} N\)