અને \(\frac{1}{{{{{f}}_w}}}\, = \,\,\left[ {\frac{{(3/2)}}{{(4/3)}} - 1} \right]\,\,K\) સાથે \(K\,\, = \,\,\left[ {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right]\,\,\,\)
\( \Rightarrow \,\,\frac{{{{{f}}_w}}}{{{{{f}}_a}}}\,\, = \,\,\left[ {\frac{8}{K}} \right]\,\, \times \,\,\left[ {\frac{K}{2}} \right]\,\,\, = \,\,\,4\,\,\,\,\,\)
\(\therefore \,\,{{{f}}_w} = \,\,4\,\,\, \times \,\,0.3\,\, = \,\,1.2\,\,m\)